Outline

- Introduction
- Related Work of ACAF
- ACAF System
 - ACAF Flow Chart
 - ACAF Training Process
 - Main Components
 - Search Mechanism
- Performance of ACAF
- Conclusion & Future Work

Introduction

Find the answer about 「台灣最高的山峰是什麼？」

- Search Engine:
 - Web
 - 台灣、最高、山峰 → Related Docs. of the keywords
- Question Answering System:
 - Web
 - 台灣最高的山峰是什麼？ → 玉山
- Answer-Finding System:
 - QA Set: Question-and-Answer Set
 - 台灣最高的山峰是什麼？ → the Answer Documents

Motivation

- Answer-Finding System
- Concepts: 山、山峰
- Answer Type: 名字、地點位置
Introduction

- Goal: Automatic Concept-Based Answer-Finding System (ACAF)
 - Answer-Finding System: Latent Semantic Analysis (LSA)
 - Question Concepts: LSA
 - Answer-Type Detection: Probabilistic Model

Outline

- Introduction
- Related Work of ACAF
- ACAF System
 - ACAF System Architecture
 - Main Components
 - Search Mechanism
- Performance of ACAF
- Conclusion & Future Work

Related Work of ACAF – Outline

- Overview of Related Work
- Answer-Finding System
- Latent Semantic Analysis (LSA)
- The Construction of Conceptual Space
- Answer-Type Detection

Overview of Related Work

Answer Finding
- Berger00
- Dumais02
- Pasca01
- Pinto02

Conceptual Space Construction
- Park96
- Chung99
- Fu01
- Lin01
- Sugumaran02
- Aggarwal01
- Bellegarda96

Answer-Type Detection
- Prager00
- Pasca01
- Zeilikovitz01
- Lin02
- Radev02

Related Work of ACAF – Outline

- Overview of Related Work
- Answer-Finding System
- Latent Semantic Analysis (LSA)
- The Construction of Conceptual Space
- Answer-Type Detection

Answer-Finding\cite{Berger00}

- Strategies for Answer-Finding
 - tf-idf
 - Adaptive tf-idf
 - Query Expansion
 - Statistical Translation
 - Latent Variable models

Answer-Finding\textsubscript{2} – IR-Based

- Strategy 1: tf-idf
 - Answer Set is Document Set
 - Who is the first American in the space?
 - Query: first American space.
- Strategy 2: Adaptive tf-idf
 - Similar to Strategy 1.
 - IDF: Increase the weight of a word that occurs in the same Q/A pairs.
- Strategy 3: Query Expansion
 - (Why → because) \& (site → http) \& (windows → Microsoft)
 - Query: (Why, because) \& (site, http) \& (windows, Microsoft)

Answer-Finding\textsubscript{3} – Translation-Based

- Strategy 4: Statistical Translation
 - at, location, place, street, directions → where
- Strategy 5: Latent Variable Models
 - EM algorithm, LSA
 - (Why → because) \& (site → http) \& (windows → Microsoft)
 - Query: (because) \& (http) \& (Microsoft)
Related Work of ACAF – Outline

- Overview of Related Work
- Answer-Finding System
- Latent Semantic Analysis (LSA)
- The Construction of Conceptual Space
- Answer-Type Detection

LSA [Landauer98] – An Example

An Example of text data: Titles of Some Technical Memos

- HCI: Human Computer Interaction
 - c1: Human machine interface for ABC computer application
 - c2: A survey of user opinion of computer system response time
 - c3: The EPS user interface management system
 - c4: System and human system engineering testing of EPS
 - c5: Relation of user perceived response time to error measurement

- Mathematical Graph Theory
 - m1: The generation of random, binary, ordered trees
 - m2: The intersection graph of paths in trees
 - m3: Graph minors IV: Widths of trees and well-quasi-ordering
 - m4: Graph minors: A survey

Flow chart

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Word</td>
<td>Word</td>
<td>Word</td>
<td>Word</td>
<td>Word</td>
<td>Word</td>
<td>Word</td>
<td>Word</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Singular Value Decomposition (SVD) and Dimension Reduction

Dimension Reduction = 2

<table>
<thead>
<tr>
<th>X</th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
<th>c5</th>
<th>m1</th>
<th>m2</th>
<th>m3</th>
<th>m4</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>-0.15</td>
<td>0.40</td>
<td>0.38</td>
<td>0.47</td>
<td>0.18</td>
<td>-0.25</td>
<td>-0.12</td>
<td>-0.16</td>
<td>-0.05</td>
</tr>
<tr>
<td>interface</td>
<td>0.14</td>
<td>0.37</td>
<td>0.33</td>
<td>0.40</td>
<td>0.16</td>
<td>-0.03</td>
<td>-0.07</td>
<td>-0.10</td>
<td>-0.04</td>
</tr>
<tr>
<td>computer</td>
<td>0.75</td>
<td>0.51</td>
<td>0.36</td>
<td>0.41</td>
<td>0.24</td>
<td>0.02</td>
<td>0.06</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>user</td>
<td>0.26</td>
<td>0.04</td>
<td>0.61</td>
<td>0.70</td>
<td>0.39</td>
<td>0.03</td>
<td>0.08</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>response</td>
<td>0.10</td>
<td>0.22</td>
<td>0.84</td>
<td>0.32</td>
<td>0.21</td>
<td>0.27</td>
<td>0.14</td>
<td>0.31</td>
<td>0.44</td>
</tr>
<tr>
<td>time</td>
<td>0.16</td>
<td>0.68</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>survey</td>
<td>0.16</td>
<td>0.51</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>system</td>
<td>0.22</td>
<td>0.05</td>
<td>0.51</td>
<td>0.63</td>
<td>0.24</td>
<td>0.07</td>
<td>-0.14</td>
<td>-0.20</td>
<td>-0.11</td>
</tr>
<tr>
<td>response</td>
<td>0.16</td>
<td>0.51</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>time</td>
<td>0.16</td>
<td>0.51</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>EPS</td>
<td>0.22</td>
<td>0.05</td>
<td>0.51</td>
<td>0.63</td>
<td>0.24</td>
<td>0.07</td>
<td>-0.14</td>
<td>-0.20</td>
<td>-0.11</td>
</tr>
<tr>
<td>survey</td>
<td>0.16</td>
<td>0.51</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>tree</td>
<td>0.16</td>
<td>0.51</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>graph</td>
<td>0.16</td>
<td>0.51</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>minors</td>
<td>0.16</td>
<td>0.51</td>
<td>0.38</td>
<td>0.42</td>
<td>0.28</td>
<td>0.06</td>
<td>0.13</td>
<td>0.19</td>
<td>0.22</td>
</tr>
</tbody>
</table>

LSA5 – An Example
LSA6 – Discussion

- Infer much deeper relations
- Construct synonym sets
- Derive association values between documents.
- Model human conceptual knowledge

Related Work of ACAF – Outline

- Overview of Related Work
- Answer-Finding System
- Latent Semantic Analysis (LSA)
- The Construction of Conceptual Space
- Answer-Type Detection

Overview of Concept Construction

- Manually construct
 - Ontology: [Sugumaran02]
- Automatically construct by term clustering
 - By Thesaurus (WordNet, HowNet): [Lin01]
 - By Document Set
 - Co-occurrence: [Chung99]
 - Bayesian Network: [Park96]
 - LSA: [Bellegarda’96]
- Automatically construct by document clustering
 - By Self-Organizing Maps (SOM): [Fu01]

Based On LSA [Bellegarda96]

Flow Chart

1. Construct Word-Document Matrix
2. SVD and Dimension Reduction
3. Define a distance measure between the singular vectors of words
4. Cluster the singular vectors (any algorithm)

\[X = WSP^T \]
Related Work of ACAF – Outline

- Overview of Related Work
- Answer-Finding System
- Latent Semantic Analysis (LSA)
- The Construction of Conceptual Space
- Answer-Type Detection

Answer Type Detection

- Document Classification
 - Machine Learning: [Lin02]
- Question Answering
 - Heuristic Rule: [Radev02]
 - Syntax + WordNet: [Pasca01]

Heuristic Rule [Radev02]

List of answer types

<table>
<thead>
<tr>
<th>PERSON</th>
<th>PLACE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER</td>
<td>DEFINITION</td>
<td>ORGANIZATION</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>ABBREVIATION</td>
<td>KNOWNFOR</td>
</tr>
<tr>
<td>RATE</td>
<td>LENGTH</td>
<td>MONEY</td>
</tr>
<tr>
<td>REASON</td>
<td>DURATION</td>
<td>PURPOSE</td>
</tr>
<tr>
<td>NOMINAL</td>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Wh-words and their corresponding types

<table>
<thead>
<tr>
<th>Wh-word</th>
<th>Types</th>
<th>Wh-word</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who(102)</td>
<td>PER(77) DES(19) ORG(6)</td>
<td>What / which (233)</td>
<td>NOM(78) PLA(27) DEF(26) PER(18) ORG(16) NUM(14) ABB(13) DATE(11) RATE(4) KNO(8) MON(3) PUR(2) REA(1)</td>
</tr>
<tr>
<td>Where(60)</td>
<td>PLA (54) NOM(4), ORG(2)</td>
<td>How(48)</td>
<td>NUM(33) LEN(6) RATE(2), MON(2) DUR(3) REA(1), DES(1)</td>
</tr>
<tr>
<td>When(40)</td>
<td>DATE(40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Why(1)</td>
<td>REA(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outline

- Introduction
- Related Work of ACAF
- ACAF System
 - ACAF Flow Chart
 - ACAF Training Process
 - Main Components
 - Search Mechanism
- Performance of ACAF
- Conclusion & Future Work
ACAF System – Outline

- ACAF Flow Chart
- ACAF Training Process
- Main Components
 - Learn the *Relationship* Between Words of Questions and Answers
 - Construct Question Concept
 - *Answer-Type* Detection
- Search Mechanism

ACAF Flow Chart

- Wq-by-Wa Matrix
- Question Concepts
- Find Top N Answer Words
- Find Top M Concepts
- Keywords
- Candidate Answers
- Question Words
- Answer Type Detection
- Answer Type Knowledge
- The Answers

ACAF Training Process

- Preprocessing
- Segmentation

Preprocessing and Segmentation

- Preprocessing
 - Control Term Phrase
 - (台, 臺), (後來, 後來), (體, 體), (我國, 中國 or 台灣), ...
- Segmentation
 - Match Dictionary: Longest matching [Nei99]
 - 我是交通大學資訊科學系的學生 → 我是交通大學、資訊科學系的學生
 - Reduce Stop Word
 - 後來, 但是, 所以, 以後, ...
 - Count word Frequency
Learn the Relationship Between Wq and Wa

- Construct Wq-by-Wa Matrix M:
 - by the co-occurrence of Wq and Wa in same Q/A pairs.

\[
M = \begin{bmatrix}
W_{wq_1} & W_{wq_2} & \ldots & W_{wq_n} \\
W_{wa_1} & m_{a1} & \ldots & m_{a_n} \\
W_{wa_2} & m_{a2} & \ldots & m_{a_n} \\
\vdots & \vdots & \ddots & \vdots \\
W_{wa_n} & m_{a1} & \ldots & m_{a_n}
\end{bmatrix}
\]

\[
w_{q_i} = [q_1, q_2, \ldots, q_n]
\]

\[
w_{a_j} = [a_1, a_2, \ldots, a_n]
\]

\[
m_{q_ia_j} = \sum_{k=1}^{n} q_k x a_k / |kth\ answer|
\]
Construct Question Concept

- Search Engine
- Segmentation & Indexing
- Related Documents
- Question Keywords

Word-by-Doc Matrix X

Construct Question Concept 2

- SVD & Dimension Reduction
- Word-by-Doc Matrix X'
- Word Clustering

Concept 1
Concept 2
Concept 3

Construct Question Concept 3

- Word Clustering:
 - Representation: row vectors of the new word-by-doc Matrix.
 - The similarity:
 \[\text{sim}_{w_i,w_j} = \frac{w_i \cdot w_j}{|w_i||w_j|} \]
 - Average-Link Clustering [Gose96]
 - One Term \rightarrow one cluster
 - For each term and each cluster,
 a term joins a cluster
 if the average similarity of the term and all terms of the cluster
 is not less than a threshold.

Construct Question Concept 4 – Average-Link Clustering Algorithm

1. Input: word vectors and threshold \(T \): Output Variable: \(\text{Clusters} = \emptyset \)
2. Count Similarities between words.
3. \(\text{Sims}[i] \leftarrow \text{Sort the Similarities bigger than } T \).
4. for \(i=0 \) To Size-of \(\text{Sims}[i] \)
 (1) Let \(\text{Sims}[i] \) is the similarity of \(w_i \) and \(w_k \).
 (2) \(\text{NewCluster} \leftarrow -1 : \text{Changes} \leftarrow 0 \)
 (3) \(\forall \text{cluster } c \) in \(\text{Clusters} \) and \(w_k \) in \(c \),
 \(\text{AVE} \leftarrow \text{the average of the similarities of } w_k \) and all words in \(c \)
 if \((\text{AVE} \geq T) \) then \(w_j \) joins \(c \) and \(\text{Changes} \leftarrow \text{Changes} + 1 \)
 if \((\text{Changes} > 0) \) then \(\text{NewCluster} \leftarrow \text{NewCluster} + 1 \) and \(\text{Changes} \leftarrow 0 \)
 (4) \(\forall \text{cluster } c \) in \(\text{Clusters} \) and \(w_j \) in \(c \),
 \(\text{AVE} \leftarrow \text{the average of the similarities of } w_j \) and all words in \(c \)
 if \((\text{AVE} \geq T) \) then \(w_j \) joins \(c \) and \(\text{Changes} \leftarrow \text{Changes} + 1 \)
 if \((\text{Changes} > 0) \) then \(\text{NewCluster} \leftarrow \text{NewCluster} + 1 \)
 (5) if \((\text{NewCluster} < 2) \) then
 \(\text{New cluster } c = \{ w_j, w_k \} \)
 \(c \) joins \(\text{Clusters} \)
Construct Question Concept \(5 \) – An Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Threshold=0.5

- **Step 1:** \((A, F)\)
- **Step 2:** consider \(AE\)
 - \(\text{Ave}(\text{sim}_{AE},\text{sim}_{EF})=0.55\)
 - \((A, E, F)\)
- **Step 3:** consider \(BF\)
 - \(\text{Ave}(\text{sim}_{AB},\text{sim}_{BE},\text{sim}_{BF})=0.4\)
 - \((A, E, F)\)
 - \((B, F)\)
- **Step 4:** consider \(AD\)
 - \(\text{Ave}(\text{sim}_{AD},\text{sim}_{DE},\text{sim}_{DF})=0.367\)
 - \((A, E, F)\)
 - \((B, F)\)
 - \((A, D)\)
 - \((A, C)\)
- **Step 5:** consider \(AC\)
 - \((A, E, F)\)
 - \((B, F)\)
 - \((A, D)\)
 - \((A, C)\)
 - \((B, D)\)
- **Step 6:** consider \(BD\)
 - \((A, E, F)\)
 - \((B, F)\)
 - \((A, D)\)
 - \((A, C)\)
 - \((B, D)\)
 - \((A, C)\)
 - \((B, D)\)

ACAF Training Process

Answer Type Detection

<table>
<thead>
<tr>
<th>Answer Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>答案類型</td>
</tr>
<tr>
<td>原因</td>
</tr>
<tr>
<td>時間</td>
</tr>
<tr>
<td>數字</td>
</tr>
<tr>
<td>描述性</td>
</tr>
<tr>
<td>地名</td>
</tr>
<tr>
<td>人名</td>
</tr>
<tr>
<td>專有名詞</td>
</tr>
<tr>
<td>HowToDo</td>
</tr>
<tr>
<td>出處</td>
</tr>
</tbody>
</table>

Answer Type Detection_2

The probability of a question term \(t_j\) in a answer type \(AT_i\):

\[
P(t_j, AT_i) = \frac{freq(t_j \in AT_i)}{\text{totfreq}(t_j)}
\]

- **Example**
 - **Question Term:** 為何
 - **Answer Type:** 原因(2)、描述性(3)、人名(3)、專有名詞(2)
 - **Total Frequency of 為何:** 10
 - **The probability of a question term \(t_j\) in a answer type \(AT_i\):**
 - \(P(\text{為何}, \text{原因})=0.2\)
 - \(P(\text{為何}, \text{描述性})=0.3\)
 - \(P(\text{為何}, \text{人名})=0.3\)
 - \(P(\text{為何}, \text{專有名詞})=0.2\)
ACAF Flow Chart

Candidate Answers

Search Mechanism – Word and Concept

- For each answer word w_a, calculate the significance of w_a for the question q.
 \[\text{score}_{wa} = \sum_{w_q \in q} m_{w_qw_a} \]

- Calculate the similarity of a question q and a concept c.
 \[\text{Sim}_{qc} = \text{Ave} \left(\text{weight}_{we} \right) \]
 \[\text{weight}_{we} = \text{Ave} \left(\text{Sim}_{we} \right) \]

Search Mechanism – SimW and SimC

- The similarity of question q and answer a according to word relationship.
 \[\text{SimW}_{qa} = p(a \mid q) = \sum_{w_c \in a} p(w_a \mid q) = \sum_{w_c \in a} \text{score}_{wa} \times \text{weight}_{wa} \]

- The similarity of question q and answer a according to concept.
 - Find the top M concepts of q and a.
 - $C_q = (C_{q1}, C_{q2}, ..., C_{qM})$ and $C_a = (C_{a1}, C_{a2}, ..., C_{aM})$
 \[\text{SimC}_{qa} = \sum_{c \in C_q, c \in C_a} \text{Sim}_{qc} \cdot \text{Sim}_{wc} \]

Search Mechanism – Candidate Answers

- Consider all answers in QA set.
 \[\text{SimWC}_{qa} = w_w \times \text{SimW}_{qa} + w_c \times \text{SimC}_{qa} \]
- Candidate Answers: $\text{SimWC}_{qa} > \text{Threshold}$
ACAF Flow Chart

ACAF Flow Chart

Search Mechanism – Answer Type

- Calculate the similarity of a question q and an answer type t.

\[Sim_{qt} = \sum_{w \in q} P_{wt} \]

- Candidate Answer Types: \(T = \{ t_1, t_2, \ldots, t_k \} \)
- The similarity of question q and answer a according to answer type.
 - If the answer type t of a was descriptive:
 \[Sim_{qa} = P_{aq} + 0.5 \times \sum_{t' \in T, t' \neq t} P_{t'a} \]
 - Otherwise
 \[Sim_{qa} = P_{aq} + 0.3 \times P_{aq'}, \text{ where } t' \text{ is descriptive.} \]

Search Mechanism – Combined

- The total Similarity of a question q and an answer a.

\[Sim_{qa} = w_w \times SimW_{qa} + w_C \times SimC_{qa} + w_T \times SimT_{qa} \]

Outline

- Introduction
- Related Works of ACAF
- ACAF System
 - ACAF Flow Chart
 - ACAF Training Process
 - Main Components
 - Search Mechanism
- Performance of ACAF
- Conclusions & Future Works
Performance of ACAF - Outline

- System Overview
- Evaluation Metrics
- The Experiment Design
- The Experiment Result
 - Search Result – Sport Rules
 - Search Result – Library Question

System Overview – QA Set

System Overview – ACAF system

System Overview – Search Result
Evaluation Metrics

- TRDR: Total Reciprocal Document Rank [Radev02]
 - The sum of the reciprocal values of the rank of all correct answers among returned N documents
 - \(TRDR = \sum_{i=1}^{N} \frac{1}{\text{rank}_i} \)
- Precision: [Ricardo99]
 - The number of correct answers among returned N documents: \(n \)
 - \(\text{precision} = \frac{n}{N} \)
- Recall: [Ricardo99]
 - The number of correct answer among QA set: \(|R| \)
 - \(\text{Recall} = \frac{n}{|R|} \)

The Experiment Design

- QA Set
 - Sport Rules
 - Library Questions
- Search Result
 - Base Line: IR
 - Word Relationship: ACAF_w
 - Word Relationship + Concept: ACAF_w_c
 - Word Relationship + Concept + Answer Type: ACAF

<table>
<thead>
<tr>
<th>Search Result – Sport Rules</th>
<th>TRDR</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>0.3542</td>
<td>0.1979</td>
<td>0.1210</td>
</tr>
<tr>
<td>Answer</td>
<td>0.3125</td>
<td>0.1458</td>
<td>0.0595</td>
</tr>
<tr>
<td>Q & A</td>
<td>0.1250</td>
<td>0.0833</td>
<td>0.0417</td>
</tr>
<tr>
<td>Search Engine (Google)</td>
<td>0.5030</td>
<td>0.1500</td>
<td></td>
</tr>
<tr>
<td>ACAF_w</td>
<td>0.7781</td>
<td>0.3397</td>
<td>0.3903</td>
</tr>
<tr>
<td>ACAF_w_c</td>
<td>0.7893</td>
<td>0.3595</td>
<td>0.4082</td>
</tr>
<tr>
<td>ACAF</td>
<td>0.8372</td>
<td>0.3679</td>
<td>0.4332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search Result – Library Questions</th>
<th>TRDR</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>0.1667</td>
<td>0.0833</td>
<td>0.0152</td>
</tr>
<tr>
<td>Answer</td>
<td>0.2500</td>
<td>0.1389</td>
<td>0.1875</td>
</tr>
<tr>
<td>Q & A</td>
<td>0.1667</td>
<td>0.0833</td>
<td>0.0152</td>
</tr>
<tr>
<td>ACAF_w</td>
<td>0.2431</td>
<td>0.0575</td>
<td>0.2431</td>
</tr>
<tr>
<td>ACAF_w_c</td>
<td>0.5238</td>
<td>0.2003</td>
<td>0.2734</td>
</tr>
<tr>
<td>ACAF</td>
<td>0.5278</td>
<td>0.1864</td>
<td>0.2734</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Related Works
- ACAF System
 - ACAF Flow Chart
 - ACAF Training Process
 - Main Components
 - Search Mechanism
- Experiment Results
- Conclusions & Future Works

Conclusion

- Combine 3 kinds of knowledge
 - Relationship between Wqs and Was
 - Conceptual Space
 - Answer-Type Knowledge
- Promoted to the semantic level
- Suitable for the reference desk of library

Future Work

- Segmentation
- LSA – Dimension Reduction
- Answer-Type Detection

References

References

